8.6 - Introduction to Rational Functions.

Objectives:

- 1. Investigate inverse variations.
- 2. Define rational functions.
- 3. Graph and find the equations of transformations of the parent function $y = \frac{1}{x}$.
- 4. Use rational functions to solve mixture problems and for other applications.

Rational Function

A **rational function** is one that can be written as a quotient, $f(x) = \frac{p(x)}{q(x)}$, where p(x) and q(x) are both polynomial expressions. The denominator polynomial cannot equal the constant 0.

Graph the parent rational function: $f(x) = \frac{1}{x}$

Asymptote: A line that a graph approaches

but <u>never crosses</u>

as the magnitude of the *x*- or *y*-values increases without bound.

Example 1: Describe the transformations of each rational function from the parent function $f(x) = \frac{1}{x}$. Then graph the new function. Be sure to identify any asymptotes:

a.
$$h(x) = \frac{1}{x+4}$$

b.
$$h(x) = \frac{1}{x} + 2$$

c.
$$h(x) = \frac{1}{x-2} - 6$$

d.
$$h(x) = \frac{2}{x}$$

f.
$$h(x) = \frac{3}{x-1} + 3$$

Write equations for the asymptotes of each hyperbola.

a.
$$y = \frac{2}{x}$$

$$C. y = \frac{1}{x} + 5$$

b.
$$y = \frac{1}{x+3}$$

$$X = -3$$

$$d. y = \frac{1}{x-2} - 6$$

$$X = 2$$

$$X=2$$

$$Y=-6$$

Example 3: Describe the function $f(x) = \frac{2x-5}{x-1}$ as a transformation of the parent function

 $f(x) = \frac{1}{x}$. Then sketch a graph. [challenge]

a.
$$\frac{6}{x-5} = -2$$

$$\frac{6}{(x-5)} = -\frac{2}{1}$$

$$-2(x-5) = 6.1$$

$$-2x+10 = 6$$

$$-10 = -10$$

$$-2x = -4$$

$$-2 = -2$$

$$X = 2$$

30% of 100 = , 3 ×100 = 30 70% of 100 = . 7 ×100 = 70

Example B: Suppose you have 100 mL of a solution that is 30% acid and 70% water. How many mL of acid do you need to add to make a solution that is 60% acid?

ACID
$$30+x = .6$$

TOTAL SOL $100+x = .6$
 $.6(100+x) = 30+x$
 $.6(100+x) = 30+x$
 $.60 = 30 + .4x$
 $.30 = .4x$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$
 $.4$

To make it 90% acid?

$$\frac{30 + x}{100 + x} = .9$$

$$\frac{9(100 + x)}{1} = .9$$

$$\frac{90 + .9x}{-30} = .9x$$

$$\frac{60}{.7} = .7x$$

$$\frac{600}{.7} = .7x$$

$$\frac{600}{.7} = .7x$$

$$\frac{600}{.7} = .7x$$

Can it ever be 100% acid?

NO-THERE WILL ALWAYS BE SOME OF THE NOW-ACID PART OF THE SOCUTION

This is a copy of your homework exercise #7. It may be easier to determine the equation if you sketch the asymptotes on the graphs.

7. Match the graphs of the rational functions with their equations.

VERTICAL STRUTCH SF 4 RIGHT 6 DOWN 2 LEFT 4
VENT STRETCH

iv. $f(x) = \frac{-1}{x+5}$ LEFT 5
REFLECTED
ACROSS X